Namespace: |
|
Defined: |
globally in cmlreact.xsd; see XML source |
Used: |
at 1 location |
Simple Content Model |
("rectangular" | "square" | "squareSymmetric" | "squareSymmetricLT" | "squareSymmetricUT" | "squareAntisymmetric" | "squareAntisymmetricLT" | "squareAntisymmetricUT" | "diagonal" | "upperTriangular" | "upperTriangularUT" | "lowerTriangular" | "lowerTriangularLT" | "unit" | "unitary" | "rowEigenvectors" | "rotation22" | "rotationTranslation32" | "homogeneous33" | "rotation33" | "rotationTranslation43" | "homogeneous44") | xsd:string |
Type Derivation Tree ![]() |
Derivation: |
by union |
Derivation: |
restriction of xsd:string |
Derivation: |
restriction of namespaceRefType |
<xsd:simpleType id="st.matrixType" name="matrixType"> <xsd:annotation> <xsd:documentation> <h:div class="summary">Allowed matrix types.</h:div> <h:div class="description"> <h:p> Many are square matrices. By default all elements must be included. For symmetric, antisymmetric and diagonal matrices some compression is possible by not reporting the identical or forced zero elements. These have their own subtypes, usually with UT or LT appended. Use these with caution as there is chance of confusion and you cannot rely on standard software to read these. </h:p> <h:p> The matrix type fixes the order and semantics of the elements in the XML element but does not mandate any local syntax. Thus an application may insert newline characters after each row or use a <row> element. </h:p> </h:div> <h:div class="example" href="matrix1.xml"/> </xsd:documentation> </xsd:annotation> <xsd:union> <xsd:simpleType> <xsd:restriction base="xsd:string"> <xsd:enumeration value="rectangular"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Rectangular with no semantic constraints and ordered rowwise (i.e. the column index runs fastest). <h:pre> 1 2 3 4 0 3 5 6 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="square"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square with no semantic constraints. <h:pre> 1 2 78 3 4 -1 -34 2 7 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="squareSymmetric"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square symmetric with all elements explicit. <h:pre> 1 2 3 2 7 1 3 1 9 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="squareSymmetricLT"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square symmetric with the diagonal and lower triangle explicit and the upper triangle omitted. Rows are of length 1, 2, 3... <h:pre> 1 2 7 3 1 9 </h:pre> is equivalent to <h:pre> 1 2 3 2 7 1 3 1 9 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="squareSymmetricUT"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square symmetric with the diagonal and upper triangle explicit. Rows are of length n, n-1, ... 2, 1 <h:pre> 1 7 9 2 -1 34 </h:pre> is equivalent to <h:pre> 1 7 9 7 2 -1 9 -1 34 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="squareAntisymmetric"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square antisymmetric with all elements explicit. The diagonal is necessarily zero. <h:pre> 0 -2 3 2 0 1 -3 -1 0 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="squareAntisymmetricLT"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square symmetric with the lower triangle explicit and diagonal and upper triangle omitted. Rows are of length 1, 2,... n-1. <h:pre> -7 -9 1 </h:pre> is equivalent to <h:pre> 0 7 9 -7 0 -1 -9 1 0 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="squareAntisymmetricUT"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square symmetric with the upper triangle explicit and diagonal and lower triangle omitted. Rows are of length n-1, n-2,... 2,1. <h:pre> 7 9 -1 </h:pre> is equivalent to <h:pre> 0 7 9 -7 0 -1 -9 1 0 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="diagonal"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Symmetric. Elements are zero except on the diagonal. No compressed representation available (use <h:tt>array</h:tt> element). </h:div> <h:pre> 1 0 0 0 3 0 0 0 4 </h:pre> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="upperTriangular"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square. Elements are zero below the diagonal <h:pre> 1 2 3 4 0 3 5 6 0 0 4 8 0 0 0 2 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="upperTriangularUT"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square. Elements below the diagonal are zero and omitted, and rows are of length n, n-1, ... , 2, 1. <h:pre> 1 2 3 4 3 5 6 4 8 2 </h:pre> is equivalent to <h:pre> 1 2 3 4 0 3 5 6 0 0 4 8 0 0 0 2 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="lowerTriangular"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square. Elements are zero above the diagonal <h:pre> 1 0 0 7 3 0 9 2 4 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="lowerTriangularLT"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square. Elements above the diagonal are zero and omitted, and rows are of length 1, 2, ...n. <h:pre> 1 3 7 9 2 3 </h:pre> is equivalent to <h:pre> 1 0 0 3 7 0 9 2 3 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="unit"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square. Diagonal elements are 1 and off-diagonal are zero. <h:pre> 1 0 0 0 1 0 0 0 1 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="unitary"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square. When multiplied by its transpose gives the unit matrix. <h:pre> 0 -1 0 1 0 0 0 0 1 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="rowEigenvectors"> <xsd:annotation> <xsd:documentation> <h:div class="description"> Square. Each row corresponds to an eigenvector of a square matrix. Elements are real. The length of the eigenvectors is undefined, i.e. they are not required to be normalised to 1. <h:pre> 0 -1 0 1 0 0 0 0 1 </h:pre> </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="rotation22"> <xsd:annotation> <xsd:documentation> <h:div class="description"> The rotation is defined by the matrix premultiplyin a column vector (x, y) . <h:pre> 0 -1 1 0 </h:pre> produces (-y, x), i.e. a rotation of -90 degrees. </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="rotationTranslation32"> <xsd:annotation> <xsd:documentation> <h:div class="description"> A third column defining the translation is added to a rotation22. <h:pre> 0 -1 22 1 0 33 </h:pre> produces (-y + 22, x + 33), i.e. a rotation of -90 degrees followed by a translation of (22, 33). </h:div> </xsd:documentation> </xsd:annotation> </xsd:enumeration> <xsd:enumeration value="homogeneous33"/> <xsd:enumeration value="rotation33"/> <xsd:enumeration value="rotationTranslation43"/> <xsd:enumeration value="homogeneous44"/> </xsd:restriction> </xsd:simpleType> <xsd:simpleType> <xsd:annotation> <xsd:documentation> <h:div class="summary">User-defined matrix-type.</h:div> <h:div class="description"> This definition must be by reference to a namespaced dictionary entry. </h:div> </xsd:documentation> </xsd:annotation> </xsd:restriction> </xsd:simpleType> </xsd:union> </xsd:simpleType> |
This XML schema documentation has been generated with DocFlex/XML RE 1.8.5 using DocFlex/XML XSDDoc 2.5.0 template set. DocFlex/XML RE is a reduced edition of DocFlex/XML, which is a tool for programming and running highly sophisticated documentation and reports generators by the data obtained from
any kind of XML files. The actual doc-generators are implemented in the form of special templates that are designed visually
using a high-quality Template Designer GUI basing on the XML schema (or DTD) files describing the data source XML. DocFlex/XML XSDDoc is a commercial template application of DocFlex/XML that implements a high-quality XML Schema documentation generator with simultaneous support of framed multi-file HTML,
single-file HTML and RTF output formats. (More formats are planned in the future). A commercial license for "DocFlex/XML XSDDoc" will allow you:
Once having only such a license, you will be able to run the fully-featured XML schema documentation generator both with DocFlex/XML (Full Edition) and with DocFlex/XML RE, which is a reduced free edition containing only the template interpretor / output generator. No other licenses will be required! But this is not all. In addition to it, a commercial license for "DocFlex/XML SDK" will allow you to modify the XSDDoc templates themselves as much as you want. You will be able to achieve whatever was impossible to do with the template parameters only.
And, of course, you could develop any template applications by your own! Please note that by purchasing a license for this software, you not only acquire a useful tool,
you will also make an important investment in its future development, the results of which you could enjoy later by yourself.
Every single your purchase matters and makes a difference for us! To purchase a license, please follow this link: http://www.filigris.com/shop/ |